Your browser doesn't support javascript.
loading
Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach.
Reynolds, Liam J; Martin, Niamh A; Sala-Comorera, Laura; Callanan, Kevin; Doyle, Padraig; O'Leary, Clare; Buggy, Paul; Nolan, Tristan M; O'Hare, Gregory M P; O'Sullivan, John J; Meijer, Wim G.
Afiliación
  • Reynolds LJ; UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland.
  • Martin NA; UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland.
  • Sala-Comorera L; UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland.
  • Callanan K; Central Laboratory, Dublin City Council, Dublin, Ireland.
  • Doyle P; Drainage Planning, Policy and Development Control, Dublin City Council, Dublin, Ireland.
  • O'Leary C; Central Laboratory, Dublin City Council, Dublin, Ireland.
  • Buggy P; Municipal Services, Dún Laoghaire-Rathdown County Council, Dublin, Ireland.
  • Nolan TM; UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland.
  • O'Hare GMP; UCD School of Computer Science, UCD Earth Institute, University College Dublin, Dublin, Ireland.
  • O'Sullivan JJ; UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research, UCD Earth Institute, University College Dublin, Dublin, Ireland.
  • Meijer WG; UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland.
Front Microbiol ; 12: 661954, 2021.
Article en En | MEDLINE | ID: mdl-34267734
ABSTRACT
Small urban streams discharging in the proximity of bathing waters may significantly contribute to the deterioration of water quality, yet their impact may be overlooked. This study focuses on the Elm Park stream in the city of Dublin that is subject to faecal contamination by unidentified sources. The aim of the study was to identify a minimum number of "sentinel" sampling stations in an urban catchment that would provide the maximum amount of information regarding faecal pollution in the catchment. Thus, high-resolution sampling within the catchment was carried out over the course of 1 year at 11 stations. Faecal indicator bacteria were enumerated and microbial source tracking (MST) was employed to evaluate human pollution. In addition, ammonium, total oxidised nitrogen, and phosphorus levels were monitored to determine if these correlated with faecal indicator and the HF183 MST marker. In addition, the effect of severe weather events on water quality was assessed using automated sampling at one of the identified "sentinel" stations during baseflow and high flow conditions over a 24-h period. Our results show that this urban stream is at times highly contaminated by point source faecal pollution and that human faecal pollution is pervasive in the catchment. Correlations between ammonium concentrations and faecal indicator bacteria (FIB) as well as the human MST marker were observed during the study. Cluster analysis identified four "sentinel" stations that provide sufficient information on faecal pollution in the stream, thus reducing the geographical complexity of the catchment. Furthermore, ammonium levels strongly correlated with FIB and the human HF183 MST marker under high flow conditions at key "sentinel" stations. This work demonstrates the effectiveness of pairing MST, faecal indicators, and ammonium monitoring to identify "sentinel" stations that could be more rapidly assessed using real-time ammonium readouts to assess remediation efforts.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2021 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2021 Tipo del documento: Article País de afiliación: Irlanda