Your browser doesn't support javascript.
loading
Predicting healthcare-seeking behavior based on stated readiness to act: development and validation of a prediction model.
Green, Eric P; Pradheep, Shyam; Heinzelman, Jessica; Nyanchoka, Anne; Achieng, Daphine; Goyal, Siddhartha; Cusson, Laura; Kurz, A Solomon; Bellows, Benjamin.
Afiliación
  • Green EP; Duke Global Health Institute, Durham, NC 27708, USA.
  • Pradheep S; Nivi, Inc., Boston, MA 02115, USA.
  • Heinzelman J; Duke Global Health Institute, Durham, NC 27708, USA.
  • Nyanchoka A; Nivi, Inc., Boston, MA 02115, USA.
  • Achieng D; Nivi, Inc., Nairobi, Kenya.
  • Goyal S; Nivi, Inc., Nairobi, Kenya.
  • Cusson L; Nivi, Inc., Boston, MA 02115, USA.
  • Kurz AS; Nivi, Inc., Boston, MA 02115, USA.
  • Bellows B; VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Waco, TX 76711, USA.
Transl Behav Med ; 12(1)2022 01 18.
Article en En | MEDLINE | ID: mdl-34283889
A starting point of many digital health interventions informed by the Stages of Change Model of behavior change is assessing a person's readiness to change. In this paper, we use the concept of readiness to develop and validate a prediction model of health-seeking behavior in the context of family planning. We conducted a secondary analysis of routinely collected, anonymized health data submitted by 4,088 female users of a free health chatbot in Kenya. We developed a prediction model of (future) self-reported action by randomly splitting the data into training and test data sets (80/20, stratified by the outcome). We further split the training data into 10 folds for cross-validating the hyperparameter tuning step in model selection. We fit nine different classification models and selected the model that maximized the area under the receiver operator curve. We then fit the selected model to the full training dataset and evaluated the performance of this model on the holdout test data. The model predicted who will visit a family planning provider in the future with high precision (0.93) and moderate recall (0.75). Using the Stages of Change framework, we concluded that 29% of women were in the "Preparation" stage, 21% were in the "Contemplation" stage, and 50% were in the "Pre-Contemplation" stage. We demonstrated that it is possible to accurately predict future healthcare-seeking behavior based on information learned during the initial encounter. Models like this may help intervention developers to tailor strategies and content in real-time.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aceptación de la Atención de Salud / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Transl Behav Med Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aceptación de la Atención de Salud / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Transl Behav Med Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos