Your browser doesn't support javascript.
loading
Small RNAs as a New Platform for Tuning the Biosynthesis of Silver Nanoparticles for Enhanced Material and Functional Properties.
Chen, Angela; Hernandez-Vargas, Julia; Han, Runhua; Cortazar-Martínez, Orlando; Gonzalez, Natalia; Patel, Sonia; Keitz, Benjamin K; Luna-Barcenas, Gabriel; Contreras, Lydia M.
Afiliación
  • Chen A; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
  • Hernandez-Vargas J; Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico.
  • Han R; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
  • Cortazar-Martínez O; Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico.
  • Gonzalez N; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
  • Patel S; Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States.
  • Keitz BK; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
  • Luna-Barcenas G; Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico.
  • Contreras LM; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Appl Mater Interfaces ; 13(31): 36769-36783, 2021 Aug 11.
Article en En | MEDLINE | ID: mdl-34319072
Genetic engineering of nanoparticle biosynthesis in bacteria could help facilitate the production of nanoparticles with enhanced or desired properties. However, this process remains limited due to the lack of mechanistic knowledge regarding specific enzymes and other key biological factors. Herein, we report on the ability of small noncoding RNAs (sRNAs) to affect silver nanoparticle (AgNP) biosynthesis using the supernatant from the bacterium Deinococcus radiodurans. Deletion strains of 12 sRNAs potentially involved in the oxidative stress response were constructed, and the supernatants from these strains were screened for their effect on AgNP biosynthesis. We identified several sRNA deletions that drastically decreased AgNP yield compared to the wild-type (WT) strain, suggesting the importance of these sRNAs in AgNP biosynthesis. Furthermore, AgNPs biosynthesized using the supernatants from three of these sRNA deletion strains demonstrated significantly enhanced antimicrobial and catalytic activities against environmentally relevant dyes and bacteria relative to AgNPs biosynthesized using the WT strain. Characterization of these AgNPs using electron microscopy (EM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) revealed that the deletion of these small RNAs led to changes within the supernatant composition that altered AgNP properties such as the surface chemistry, surface potential, and overall composition. Taken together, our results demonstrate that modulating specific sRNA levels can affect the composition of supernatants used to biosynthesize AgNPs, resulting in AgNPs with unique material properties and improved functionality; as such, we introduce sRNAs as a new platform for genetically engineering the biosynthesis of metal nanoparticles using bacteria. Many of the sRNAs examined in this work have potential regulatory roles in oxidative stress responses; further studies into their targets could help provide insight into the specific molecular mechanisms underlying bacterial biosynthesis and metal reduction, enabling the production of nanoparticles with enhanced properties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plata / Nanopartículas del Metal / ARN Pequeño no Traducido / Antibacterianos Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plata / Nanopartículas del Metal / ARN Pequeño no Traducido / Antibacterianos Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos