Your browser doesn't support javascript.
loading
Decompose Boolean Matrices with Correlation Clustering.
Aszalós, László.
Afiliación
  • Aszalós L; Faculty of Informatics, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary.
Entropy (Basel) ; 23(7)2021 Jul 02.
Article en En | MEDLINE | ID: mdl-34356393
One of the tasks of data science is the decomposition of large matrices in order to understand their structures. A special case of this is when we decompose relations, i.e., logical matrices. In this paper, we present a method based on the similarity of rows and columns, which uses correlation clustering to cluster the rows and columns of the matrix, facilitating the visualization of the relation by rearranging the rows and columns. In this article, we compare our method with Gunther Schmidt's problems and solutions. Our method produces the original solutions by selecting its parameters from a small set. However, with other parameters, it provides solutions with even lower entropy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Hungria