Your browser doesn't support javascript.
loading
Asymmetric Total Synthesis of Clionastatins A and B.
Ju, Wei; Wang, Xudong; Tian, Hailong; Gui, Jinghan.
Afiliación
  • Ju W; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Wang X; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Tian H; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
  • Gui J; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
J Am Chem Soc ; 143(33): 13016-13021, 2021 08 25.
Article en En | MEDLINE | ID: mdl-34398601
Herein we report the first total synthesis of polychlorinated steroids clionastatins A and B, which was accomplished asymmetrically by means of a convergent, radical fragment coupling approach. Key features of the synthesis include an Ireland-Claisen rearrangement to introduce the C5 stereocenter (which was ultimately transferred to the C10 quaternary stereocenter of the clionastatins via a traceless stereochemical relay), a regioselective acyl radical conjugate addition to join the two fragments, an intramolecular Heck reaction to install the C10 quaternary stereocenter, and a diastereoselective olefin dichlorination to establish the synthetically challenging pseudoequatorial dichlorides. This work also enabled us to determine that the true structures of clionastatins A and B are in fact C14 epimers of the originally proposed structures.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: China