Your browser doesn't support javascript.
loading
Statistical energy minimization theory for systems of drop-carrier particles.
Du, Ryan Shijie; Liu, Lily; Ng, Simon; Sambandam, Sneha; Hernandez Adame, Bernardo; Perez, Hansell; Ha, Kyung; Falcon, Claudia; de Rutte, Joseph; Di Carlo, Dino; Bertozzi, Andrea L.
Afiliación
  • Du RS; Department of Mathematics, University of California, Los Angeles, California, USA.
  • Liu L; Department of Mathematics, University of Chicago, Chicago, Illinois, USA.
  • Ng S; Department of Bioengineering, University of California, Los Angeles, California, USA.
  • Sambandam S; Department of Mathematics, University of California, Los Angeles, California, USA.
  • Hernandez Adame B; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Perez H; Department of Mathematics, University of California, Merced, California, USA.
  • Ha K; Department of Mathematics, University of California, Los Angeles, California, USA.
  • Falcon C; Department of Mathematics, University of California, Los Angeles, California, USA.
  • de Rutte J; Department of Bioengineering, University of California, Los Angeles, California, USA.
  • Di Carlo D; Department of Bioengineering, University of California, Los Angeles, California, USA.
  • Bertozzi AL; Department of Mechanical Engineering, University of California, Los Angeles, California, USA.
Phys Rev E ; 104(1-2): 015109, 2021 Jul.
Article en En | MEDLINE | ID: mdl-34412304
ABSTRACT
Drop-carrier particles (DCPs) are solid microparticles designed to capture uniform microscale drops of a target solution without using costly microfluidic equipment and techniques. DCPs are useful for automated and high-throughput biological assays and reactions, as well as single-cell analyses. Surface energy minimization provides a theoretical prediction for the volume distribution in pairwise droplet splitting, showing good agreement with macroscale experiments. We develop a probabilistic pairwise interaction model for a system of such DCPs exchanging fluid volume to minimize surface energy. This leads to a theory for the number of pairwise interactions of DCPs needed to reach a uniform volume distribution. Heterogeneous mixtures of DCPs with different sized particles require fewer interactions to reach a minimum energy distribution for the system. We optimize the DCP geometry for minimal required target solution and uniformity in droplet volume.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos