Your browser doesn't support javascript.
loading
A Bayesian approach for estimating typhoid fever incidence from large-scale facility-based passive surveillance data.
Phillips, Maile T; Meiring, James E; Voysey, Merryn; Warren, Joshua L; Baker, Stephen; Basnyat, Buddha; Clemens, John D; Dolecek, Christiane; Dunstan, Sarah J; Dougan, Gordon; Gordon, Melita A; Thindwa, Deus; Heyderman, Robert S; Holt, Kathryn E; Qadri, Firdausi; Pollard, Andrew J; Pitzer, Virginia E.
Afiliación
  • Phillips MT; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
  • Meiring JE; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
  • Voysey M; National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
  • Warren JL; Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
  • Baker S; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
  • Basnyat B; National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
  • Clemens JD; Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.
  • Dolecek C; Department of Medicine, University of Cambridge, Cambridge, UK.
  • Dunstan SJ; Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal.
  • Dougan G; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  • Gordon MA; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Thindwa D; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
  • Heyderman RS; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
  • Holt KE; Department of Medicine, University of Cambridge, Cambridge, UK.
  • Qadri F; Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
  • Pollard AJ; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
  • Pitzer VE; Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
Stat Med ; 40(26): 5853-5870, 2021 11 20.
Article en En | MEDLINE | ID: mdl-34428309
Decisions about typhoid fever prevention and control are based on estimates of typhoid incidence and their uncertainty. Lack of specific clinical diagnostic criteria, poorly sensitive diagnostic tests, and scarcity of accurate and complete datasets contribute to difficulties in calculating age-specific population-level typhoid incidence. Using data from the Strategic Typhoid Alliance across Africa and Asia program, we integrated demographic censuses, healthcare utilization surveys, facility-based surveillance, and serological surveillance from Malawi, Nepal, and Bangladesh to account for under-detection of cases. We developed a Bayesian approach that adjusts the count of reported blood-culture-positive cases for blood culture detection, blood culture collection, and healthcare seeking-and how these factors vary by age-while combining information from prior published studies. We validated the model using simulated data. The ratio of observed to adjusted incidence rates was 7.7 (95% credible interval [CrI]: 6.0-12.4) in Malawi, 14.4 (95% CrI: 9.3-24.9) in Nepal, and 7.0 (95% CrI: 5.6-9.2) in Bangladesh. The probability of blood culture collection led to the largest adjustment in Malawi, while the probability of seeking healthcare contributed the most in Nepal and Bangladesh; adjustment factors varied by age. Adjusted incidence rates were within or below the seroincidence rate limits of typhoid infection. Estimates of blood-culture-confirmed typhoid fever without these adjustments results in considerable underestimation of the true incidence of typhoid fever. Our approach allows each phase of the reporting process to be synthesized to estimate the adjusted incidence of typhoid fever while correctly characterizing uncertainty, which can inform decision-making for typhoid prevention and control.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fiebre Tifoidea Tipo de estudio: Diagnostic_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País/Región como asunto: Africa / Asia Idioma: En Revista: Stat Med Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fiebre Tifoidea Tipo de estudio: Diagnostic_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País/Región como asunto: Africa / Asia Idioma: En Revista: Stat Med Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos