Your browser doesn't support javascript.
loading
Comparative proteomic investigation of multiple methicillin-resistant Staphylococcus aureus strains generated through adaptive laboratory evolution.
Sulaiman, Jordy Evan; Long, Lexin; Wu, Long; Qian, Pei-Yuan; Lam, Henry.
Afiliación
  • Sulaiman JE; Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
  • Long L; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
  • Wu L; Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
  • Qian PY; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
  • Lam H; Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
iScience ; 24(9): 102950, 2021 Sep 24.
Article en En | MEDLINE | ID: mdl-34458699
ABSTRACT
Recent discoveries indicate that tolerance and resistance could rapidly evolve in bacterial populations under intermittent antibiotic treatment. In the present study, we applied antibiotic combinations in laboratory experiments to generate novel methicillin-resistant Staphylococcus aureus strains with distinct phenotypes (tolerance, resistance, and suppressed tolerance), and compared their proteome profiles to uncover the adaptation mechanisms. While the tolerant strains have very different proteomes than the susceptible ancestral strain, the resistant strain largely resembles the ancestral in terms of their proteomes. Our proteomics data and other assays support the connection between the detected mutations to the observed phenotypes, confirming the general understanding of tolerance and resistance mechanisms. While resistance directly counteracts the action mechanism of the antibiotic, tolerance involves complex substantial changes in the cells' biological process to achieve survival advantages. Overall, this study provides insights into the existence of diverse evolutionary pathways for tolerance and resistance development under different treatment scenarios.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2021 Tipo del documento: Article País de afiliación: Hong Kong

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2021 Tipo del documento: Article País de afiliación: Hong Kong