Your browser doesn't support javascript.
loading
A Deep Learning-Enabled Electrocardiogram Model for the Identification of a Rare Inherited Arrhythmia: Brugada Syndrome.
Liu, Chih-Min; Liu, Chien-Liang; Hu, Kai-Wen; Tseng, Vincent S; Chang, Shih-Lin; Lin, Yenn-Jiang; Lo, Li-Wei; Chung, Fa-Po; Chao, Tze-Fan; Tuan, Ta-Chuan; Liao, Jo-Nan; Lin, Chin-Yu; Chang, Ting-Yung; Shen-Jang Fann, Cathy; Higa, Satoshi; Yagi, Nobumori; Hu, Yu-Feng; Chen, Shih-Ann.
Afiliación
  • Liu CM; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Liu CL; Department of Industrial Engineering and Management, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
  • Hu KW; Department of Industrial Engineering and Management, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
  • Tseng VS; Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
  • Chang SL; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Lin YJ; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Lo LW; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Chung FP; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Chao TF; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Tuan TC; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Liao JN; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Lin CY; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Chang TY; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  • Shen-Jang Fann C; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
  • Higa S; Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan.
  • Yagi N; Division of Cardiovascular Medicine, Nakagami Hospital, Okinawa, Japan.
  • Hu YF; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
  • Chen SA; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung
Can J Cardiol ; 38(2): 152-159, 2022 02.
Article en En | MEDLINE | ID: mdl-34461230
BACKGROUND: Brugada syndrome is a major cause of sudden cardiac death in young people and has distinctive electrocardiographic (ECG) features. We aimed to develop a deep learning-enabled ECG model for automatic screening for Brugada syndrome to identify these patients at an early point in time, thus allowing for life-saving therapy. METHODS: A total of 276 ECGs with a type 1 Brugada ECG pattern (276 type 1 Brugada ECGs and another randomly retrieved 276 non-Brugada type ECGs for 1:1 allocation) were extracted from the hospital-based ECG database for a 2-stage analysis with a deep learning model. After trained network for identifying right bundle branch block pattern, we transferred the first-stage learning to the second task to diagnose the type 1 Brugada ECG pattern. The diagnostic performance of the deep learning model was compared with that of board-certified practicing cardiologists. The model was further validated in an independent ECG data set collected from hospitals in Taiwan and Japan. RESULTS: The diagnoses by the deep learning model (area under the receiver operating characteristic curve [AUC] 0.96, sensitivity 88.4%, specificity 89.1%) were highly consistent with the standard diagnoses (kappa coefficient 0.78). However, the diagnoses by the cardiologists were significantly different from the standard diagnoses, with only moderate consistency (kappa coefficient 0.63). In the independent ECG cohort, the deep learning model still reached a satisfactory diagnostic performance (AUC 0.89, sensitivity 86.0%, specificity 90.0%). CONCLUSIONS: We present the first deep learning-enabled ECG model for diagnosing Brugada syndrome, which appears to be a robust screening tool with a diagnostic potential rivalling trained physicians.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diagnóstico por Computador / Enfermedades Raras / Electrocardiografía / Síndrome de Brugada / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: Can J Cardiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diagnóstico por Computador / Enfermedades Raras / Electrocardiografía / Síndrome de Brugada / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male / Middle aged País/Región como asunto: Asia Idioma: En Revista: Can J Cardiol Asunto de la revista: CARDIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Taiwán