The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev
; 102(2): 551-604, 2022 04 01.
Article
en En
| MEDLINE
| ID: mdl-34541898
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Biónica
/
Retroalimentación Sensorial
/
Interfaces Cerebro-Computador
/
Mano
/
Movimiento
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Physiol Rev
Año:
2022
Tipo del documento:
Article
País de afiliación:
Georgia