Your browser doesn't support javascript.
loading
Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans.
Porto, Daniel; Matsunaga, Yohei; Franke, Barbara; Williams, Rhys M; Qadota, Hiroshi; Mayans, Olga; Benian, Guy M; Lu, Hang.
Afiliación
  • Porto D; Interdisciplinary Bioengineering Program, Georgia Institute of Technology, Atlanta, United States.
  • Matsunaga Y; Department of Pathology, Emory University, Atlanta, United States.
  • Franke B; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Williams RM; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Qadota H; Department of Pathology, Emory University, Atlanta, United States.
  • Mayans O; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Benian GM; Department of Pathology, Emory University, Atlanta, United States.
  • Lu H; Interdisciplinary Bioengineering Program, Georgia Institute of Technology, Atlanta, United States.
Elife ; 102021 09 27.
Article en En | MEDLINE | ID: mdl-34569929
ABSTRACT
The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic Caenorhabditis elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signaling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g., zebrafish).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conformación Proteica / Proteínas de Unión a Calmodulina / Proteínas de Caenorhabditis elegans / Contracción Muscular / Proteínas Musculares Límite: Animals Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Conformación Proteica / Proteínas de Unión a Calmodulina / Proteínas de Caenorhabditis elegans / Contracción Muscular / Proteínas Musculares Límite: Animals Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos