Your browser doesn't support javascript.
loading
Accelerating Reaction Rates of Biomolecules by Using Shear Stress in Artificial Capillary Systems.
Hakala, Tuuli A; Yates, Emma V; Challa, Pavan K; Toprakcioglu, Zenon; Nadendla, Karthik; Matak-Vinkovic, Dijana; Dobson, Christopher M; Martínez, Rodrigo; Corzana, Francisco; Knowles, Tuomas P J; Bernardes, Gonçalo J L.
Afiliación
  • Hakala TA; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Yates EV; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Challa PK; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Toprakcioglu Z; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Nadendla K; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Matak-Vinkovic D; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Dobson CM; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Martínez R; Departamento de Química, Universidad de La Rioja, 26006 Logroño, Spain.
  • Corzana F; Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain.
  • Knowles TPJ; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Bernardes GJL; Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, CB3 0HE Cambridge, United Kingdom.
J Am Chem Soc ; 143(40): 16401-16410, 2021 10 13.
Article en En | MEDLINE | ID: mdl-34606279
ABSTRACT
Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biomimética Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biomimética Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido