Your browser doesn't support javascript.
loading
Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics.
Liu, Yuanchao; Hu, Huiping; Cai, Manjun; Liang, Xiaowei; Wu, Xiaoxian; Wang, Ao; Chen, Xiaoguang; Li, Xiangmin; Xiao, Chun; Huang, Longhua; Xie, Yizhen; Wu, Qingping.
Afiliación
  • Liu Y; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou,
  • Hu H; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China.
  • Cai M; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Liang X; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Wu X; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Wang A; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Chen X; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Li X; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China.
  • Xiao C; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Huang L; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
  • Xie Y; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China.
  • Wu Q; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou,
Gene ; 808: 145996, 2022 Jan 15.
Article en En | MEDLINE | ID: mdl-34634440
ABSTRACT
Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Basidiomycota Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Asia Idioma: En Revista: Gene Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Basidiomycota Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: Asia Idioma: En Revista: Gene Año: 2022 Tipo del documento: Article