Your browser doesn't support javascript.
loading
Fast Intrinsic Emission Quenching in Cs4PbBr6 Nanocrystals.
Petralanda, Urko; Biffi, Giulia; Boehme, Simon C; Baranov, Dmitry; Krahne, Roman; Manna, Liberato; Infante, Ivan.
Afiliación
  • Petralanda U; Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
  • Biffi G; Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
  • Boehme SC; Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy.
  • Baranov D; Department of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
  • Krahne R; Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
  • Manna L; Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
  • Infante I; Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
Nano Lett ; 21(20): 8619-8626, 2021 10 27.
Article en En | MEDLINE | ID: mdl-34643400
ABSTRACT
Cs4PbBr6 (0D) nanocrystals at room temperature have both been reported as nonemissive and green-emissive systems in conflicting reports, with no consensus regarding both the origin of the green emission and the emission quenching mechanism. Here, via ab initio molecular dynamics (AIMD) simulations and temperature-dependent photoluminescence (PL) spectroscopy, we show that the PL in these 0D metal halides is thermally quenched well below 300 K via strong electron-phonon coupling. To unravel the source of green emission reported for bulk 0D systems, we further study two previously suggested candidate green emitters (i) a Br vacancy, which we demonstrate to present a strong thermal emission quenching at room temperature; (ii) an impurity, based on octahedral connectivity, that succeeds in suppressing nonradiative quenching via a reduced electron-phonon coupling in the corner-shared lead bromide octahedral network. These findings contribute to unveiling the mechanism behind the temperature-dependent PL in lead halide materials of different dimensionality.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Italia