Your browser doesn't support javascript.
loading
Mitral Valve Segmentation Using Robust Nonnegative Matrix Factorization.
Dröge, Hannah; Yuan, Baichuan; Llerena, Rafael; Yen, Jesse T; Moeller, Michael; Bertozzi, Andrea L.
Afiliación
  • Dröge H; Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany.
  • Yuan B; Department of Mathematics, University of California, Los Angeles, CA 90095, USA.
  • Llerena R; Non-Invasive Cardiology Department, Keck Medical Center of University of Southern California, Los Angeles, CA 90033, USA.
  • Yen JT; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
  • Moeller M; Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany.
  • Bertozzi AL; Department of Mathematics, University of California, Los Angeles, CA 90095, USA.
J Imaging ; 7(10)2021 Oct 16.
Article en En | MEDLINE | ID: mdl-34677299
Analyzing and understanding the movement of the mitral valve is of vital importance in cardiology, as the treatment and prevention of several serious heart diseases depend on it. Unfortunately, large amounts of noise as well as a highly varying image quality make the automatic tracking and segmentation of the mitral valve in two-dimensional echocardiographic videos challenging. In this paper, we present a fully automatic and unsupervised method for segmentation of the mitral valve in two-dimensional echocardiographic videos, independently of the echocardiographic view. We propose a bias-free variant of the robust non-negative matrix factorization (RNMF) along with a window-based localization approach, that is able to identify the mitral valve in several challenging situations. We improve the average f1-score on our dataset of 10 echocardiographic videos by 0.18 to a f1-score of 0.56.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Imaging Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Imaging Año: 2021 Tipo del documento: Article País de afiliación: Alemania