Your browser doesn't support javascript.
loading
Machine learning with asymmetric abstention for biomedical decision-making.
Gandouz, Mariem; Holzmann, Hajo; Heider, Dominik.
Afiliación
  • Gandouz M; Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, University of Marburg, 35032, Marburg, Germany.
  • Holzmann H; Department of Statistics, Faculty of Mathematics and Computer Science, University of Marburg, 35032, Marburg, Germany.
  • Heider D; Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, University of Marburg, 35032, Marburg, Germany. dominik.heider@uni-marburg.de.
BMC Med Inform Decis Mak ; 21(1): 294, 2021 10 26.
Article en En | MEDLINE | ID: mdl-34702225
Machine learning and artificial intelligence have entered biomedical decision-making for diagnostics, prognostics, or therapy recommendations. However, these methods need to be interpreted with care because of the severe consequences for patients. In contrast to human decision-making, computational models typically make a decision also with low confidence. Machine learning with abstention better reflects human decision-making by introducing a reject option for samples with low confidence. The abstention intervals are typically symmetric intervals around the decision boundary. In the current study, we use asymmetric abstention intervals, which we demonstrate to be better suited for biomedical data that is typically highly imbalanced. We evaluate symmetric and asymmetric abstention on three real-world biomedical datasets and show that both approaches can significantly improve classification performance. However, asymmetric abstention rejects as many or fewer samples compared to symmetric abstention and thus, should be used in imbalanced data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Alemania