Your browser doesn't support javascript.
loading
Rational Design of Protein-Specific Folding Modifiers.
Das, Anirban; Yadav, Anju; Gupta, Mona; R, Purushotham; Terse, Vishram L; Vishvakarma, Vicky; Singh, Sameer; Nandi, Tathagata; Banerjee, Arkadeep; Mandal, Kalyaneswar; Gosavi, Shachi; Das, Ranabir; Ainavarapu, Sri Rama Koti; Maiti, Sudipta.
Afiliación
  • Das A; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • Yadav A; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • Gupta M; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • R P; Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
  • Terse VL; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
  • Vishvakarma V; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • Singh S; TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India.
  • Nandi T; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • Banerjee A; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
  • Mandal K; TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India.
  • Gosavi S; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
  • Das R; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
  • Ainavarapu SRK; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
  • Maiti S; Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
J Am Chem Soc ; 143(44): 18766-18776, 2021 11 10.
Article en En | MEDLINE | ID: mdl-34724378
Protein-folding can go wrong in vivo and in vitro, with significant consequences for the living organism and the pharmaceutical industry, respectively. Here we propose a design principle for small-peptide-based protein-specific folding modifiers. The principle is based on constructing a "xenonucleus", which is a prefolded peptide that mimics the folding nucleus of a protein. Using stopped-flow kinetics, NMR spectroscopy, Förster resonance energy transfer, single-molecule force measurements, and molecular dynamics simulations, we demonstrate that a xenonucleus can make the refolding of ubiquitin faster by 33 ± 5%, while variants of the same peptide have little or no effect. Our approach provides a novel method for constructing specific, genetically encodable folding catalysts for suitable proteins that have a well-defined contiguous folding nucleus.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ubiquitina Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ubiquitina Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: India