Massive and Topological Surface States in Tensile-Strained HgTe.
Nano Lett
; 21(23): 9869-9874, 2021 Dec 08.
Article
en En
| MEDLINE
| ID: mdl-34812638
Magneto-transport measurements on gated high-mobility heterostructures containing a 60 nm layer of tensile-strained HgTe, a three-dimensional topological insulator, show well-developed Hall quantization from surface states both in the n- as well as in the p-type regime. While the n-type behavior is due to transport in the topological surface state of the material, we find from 8-orbital k·p calculations that the p-type transport results from massive Volkov-Pankratov states. Their formation prevents the Dirac point and thus the p-conducting topological surface state from being accessible in transport experiments. This interpretation is supported by low-field magneto-transport experiments demonstrating the coexistence of n-conducting topological surface states and p-conducting Volkov-Pankratov states at the relevant gate voltages.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2021
Tipo del documento:
Article
País de afiliación:
Alemania