Your browser doesn't support javascript.
loading
Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer.
Joshi, Suhasini; Gomes, Erica DaGama; Wang, Tai; Corben, Adriana; Taldone, Tony; Gandu, Srinivasa; Xu, Chao; Sharma, Sahil; Buddaseth, Salma; Yan, Pengrong; Chan, Lon Yin L; Gokce, Askan; Rajasekhar, Vinagolu K; Shrestha, Lisa; Panchal, Palak; Almodovar, Justina; Digwal, Chander S; Rodina, Anna; Merugu, Swathi; Pillarsetty, NagaVaraKishore; Miclea, Vlad; Peter, Radu I; Wang, Wanyan; Ginsberg, Stephen D; Tang, Laura; Mattar, Marissa; de Stanchina, Elisa; Yu, Kenneth H; Lowery, Maeve; Grbovic-Huezo, Olivera; O'Reilly, Eileen M; Janjigian, Yelena; Healey, John H; Jarnagin, William R; Allen, Peter J; Sander, Chris; Erdjument-Bromage, Hediye; Neubert, Thomas A; Leach, Steven D; Chiosis, Gabriela.
Afiliación
  • Joshi S; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Gomes ED; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Wang T; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Corben A; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Taldone T; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Gandu S; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Xu C; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Sharma S; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Buddaseth S; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Yan P; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Chan LYL; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Gokce A; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Rajasekhar VK; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Shrestha L; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Panchal P; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Almodovar J; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Digwal CS; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Rodina A; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Merugu S; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Pillarsetty N; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Miclea V; Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania.
  • Peter RI; Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania.
  • Wang W; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Ginsberg SD; Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
  • Tang L; Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
  • Mattar M; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • de Stanchina E; Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Yu KH; Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Lowery M; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Grbovic-Huezo O; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • O'Reilly EM; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Janjigian Y; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Healey JH; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Jarnagin WR; Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA.
  • Allen PJ; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Sander C; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Erdjument-Bromage H; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Neubert TA; Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
  • Leach SD; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
  • Chiosis G; Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
Commun Biol ; 4(1): 1333, 2021 11 25.
Article en En | MEDLINE | ID: mdl-34824367
ABSTRACT
Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Genoma / Chaperonas Moleculares / Mapeo de Interacción de Proteínas / Epigénesis Genética / Mapas de Interacción de Proteínas / Neoplasias Límite: Animals / Female / Humans Idioma: En Revista: Commun Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Genoma / Chaperonas Moleculares / Mapeo de Interacción de Proteínas / Epigénesis Genética / Mapas de Interacción de Proteínas / Neoplasias Límite: Animals / Female / Humans Idioma: En Revista: Commun Biol Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos