A new class of 5-HT2A /5-HT2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2-aminotetralins.
Br J Pharmacol
; 179(11): 2610-2630, 2022 06.
Article
en En
| MEDLINE
| ID: mdl-34837227
BACKGROUND AND PURPOSE: The 5-HT receptor subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and H1 receptors is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C receptors for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH: We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta-position. Affinity, function, molecular modeling and 5-HT2A receptor mutagenesis studies were performed to understand structure-activity relationships at 5-HT2 -type and H1 receptors. Lead 4-PAT-type 5-HT2A /5-HT2C receptor inverse agonists were compared with pimavanserin, a selective 5-HT2A /5-HT2C receptor inverse agonist approved to treat Parkinson's disease-related psychosis, in the mouse head twitch response and locomotor activity assays, models relevant to antipsychotic drug development. KEY RESULTS: Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C and H1 receptors, with >100-fold selectivity over 5-HT2B receptors, whereas diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C receptors and had >100-fold selectivity over 5-HT2B and H1 receptors. Results suggest that G2385.42 and V2355.39 in 5-HT2A receptors (conserved in 5-HT2C receptors) are important for high affinity binding, whereas interactions with T1945.42 and W1584.56 determine H1 receptor affinity. The 4-PAT analog (2S,4R)-4-(4'-(dimethylamino)-[1,1'-biphenyl]-3-yl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C receptor inverse agonist, had activity like pimavanserin in the mouse head twitch response assay but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS: The novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C receptor inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. Chirality can be exploited to attain selectivity over H1 receptors, which may circumvent sedative effects.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Antipsicóticos
/
Serotonina
Límite:
Animals
Idioma:
En
Revista:
Br J Pharmacol
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos