Your browser doesn't support javascript.
loading
Gene Knock-in by CRISPR/Cas9 and Cell Sorting in Macrophage and T Cell Lines.
Zhang, Lichen; Huang, Rong; Lu, Liaoxun; Fu, Rui; Guo, Guo; Gu, Yanrong; Liu, Zhuangzhuang; He, Le; Malissen, Marie; Liang, Yinming.
Afiliación
  • Zhang L; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University; zhanglichen@xxmu.edu.cn.
  • Huang R; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Lu L; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Fu R; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Guo G; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Gu Y; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Liu Z; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • He L; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University.
  • Malissen M; Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université.
  • Liang Y; The Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University; yinming.liang@foxmail.com.
J Vis Exp ; (177)2021 11 13.
Article en En | MEDLINE | ID: mdl-34842230
Functional genomics studies of the immune system require genetic manipulations that involve both deletion of target genes and addition of elements to proteins of interest. Identification of gene functions in cell line models is important for gene discovery and exploration of cell-intrinsic mechanisms. However, genetic manipulations of immune cells such as T cells and macrophage cell lines using CRISPR/Cas9-mediated knock-in are difficult because of the low transfection efficiency of these cells, especially in a quiescent state. To modify genes in immune cells, drug-resistance selection and viral vectors are typically used to enrich for cells expressing the CRIPSR/Cas9 system, which inevitably results in undesirable intervention of the cells. In a previous study, we designed dual fluorescent reporters coupled to CRISPR/Cas9 that were transiently expressed after electroporation. This technical solution leads to rapid gene deletion in immune cells; however, gene knock-in in immune cells such as T cells and macrophages without the use of drug-resistance selection or viral vectors is even more challenging. In this article, we show that by using cell sorting to aid selection of cells transiently expressing CRISPR/Cas9 constructs targeting the Rosa26 locus in combination with a donor plasmid, gene knock-in can be achieved in both T cells and macrophages without drug-resistance enrichment. As an example, we show how to express human ACE2, a receptor of SARS-Cov-2, which is responsible for the current Covid-19 pandemic, in RAW264.7 macrophages by performing knock-in experiments. Such gene knock-in cells can be widely used for mechanistic studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / COVID-19 Límite: Humans Idioma: En Revista: J Vis Exp Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / COVID-19 Límite: Humans Idioma: En Revista: J Vis Exp Año: 2021 Tipo del documento: Article