Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight.
J Hazard Mater
; 427: 127896, 2022 Apr 05.
Article
en En
| MEDLINE
| ID: mdl-34862103
Heterogeneous electro-Fenton (hetero-EF) process is an emerging alternative for effective oxidation of recalcitrant micropollutants, but it is hampered by limited hydroxyl radical (â¢OH) generation and low stability on the iron-based cathodes. Herein, we demonstrate an enhanced hetero-EF performance via modulation of iron electronic structure in an ordered mesoporous carbon (OMC). By tuning the cobalt incorporation, the highly-dispersed iron-cobalt (FeCo) nanoalloys in mesochannels (Fe0.5Co0.5@OMC) show a 3-fold increase in â¢OH yield compared with Fe@OMC, achieving degradation efficiency with 92% of sulfamethazine (SMT) and 99% of rhodamine B (RhB), and the corresponding total organic carbon (TOC) removal with 66% of SMT and 85% of RhB within 2 h in neutral pH, respectively. Experimental results and density functional theory (DFT) calculations demonstrate that iron incorporated with cobalt reduces energy barrier for facile generation of H2O2 and â¢OH from O2 through direct electron transfer, along with decreased overpotential. Meanwhile, cobalt doping promotes H2O2 decomposition by accelerated Fe(II)/Fe(III) cycle and Co(II)/Co(III) redox. Furthermore, spatially confined and half-embedded structure endows the nanocatalyst (8 nm) excellent durability within a wide pH value range and good stability in cycle tests. A plausible reaction mechanism and degradation pathway for SMT are proposed. Moreover, the superiority of Fe0.5Co0.5@OMC cathode is maintained in simulated wastewater, suggesting an enormous potential in practical wastewater treatment.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2022
Tipo del documento:
Article