Quenching Epigenetic Drug Resistance Using Antihypoxic Microparticles in Glioblastoma Patient-Derived Chips.
Adv Healthc Mater
; 11(8): e2102226, 2022 04.
Article
en En
| MEDLINE
| ID: mdl-34963195
Glioblastoma (GBM) is one of the most intractable tumor types due to the progressive drug resistance upon tumor mass expansion. Incremental hypoxia inside the growing tumor mass drives epigenetic drug resistance by activating nongenetic repair of antiapoptotic DNA, which could be impaired by drug treatment. Hence, rescuing intertumor hypoxia by oxygen-generating microparticles may promote susceptibility to antitumor drugs. Moreover, a tumor-on-a-chip model enables user-specified alternation of clinic-derived samples. This study utilizes patient-derived glioblastoma tissue to generate cell spheroids with size variations in a 3D microchannel network chip (GBM chip). As the spheroid size increases, epigenetic drug resistance is promoted with inward hypoxia severance, as supported by the spheroid size-proportional expression of hypoxia-inducible factor-1a in the chip. Loading antihypoxia microparticles onto the spheroid surface significantly reduces drug resistance by silencing the expression of critical epigenetic factor, resulting in significantly decreased cell invasiveness. The results are confirmed in vitro using cell line and patient samples in the chip as well as chip implantation into a hypoxic hindlimb ischemia model in mice, which is an unprecedented approach in the field.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias Encefálicas
/
Glioblastoma
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Adv Healthc Mater
Año:
2022
Tipo del documento:
Article