Your browser doesn't support javascript.
loading
Investigation of PM2.5 pollution during COVID-19 pandemic in Guangzhou, China.
Wen, Luyao; Yang, Chun; Liao, Xiaoliang; Zhang, Yanhao; Chai, Xuyang; Gao, Wenjun; Guo, Shulin; Bi, Yinglei; Tsang, Suk-Ying; Chen, Zhi-Feng; Qi, Zenghua; Cai, Zongwei.
Afiliación
  • Wen L; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Yang C; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Liao X; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Zhang Y; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
  • Chai X; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Gao W; Guangzhou Meteorological Public Service Center, Guangzhou Meteorological Service, Guangzhou 510006, China.
  • Guo S; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Bi Y; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Tsang SY; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
  • Chen ZF; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China.
  • Qi Z; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China. Electron
  • Cai Z; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Rm 510, Engineering Facility Building No.3, Guangzhou 510006, China; State Ke
J Environ Sci (China) ; 115: 443-452, 2022 May.
Article en En | MEDLINE | ID: mdl-34969472
The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 µg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire / COVID-19 Límite: Humans País/Región como asunto: Asia Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire / COVID-19 Límite: Humans País/Región como asunto: Asia Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: China