Your browser doesn't support javascript.
loading
A Hybrid Visual-Based SLAM Architecture: Local Filter-Based SLAM with KeyFrame-Based Global Mapping.
Munguia, Rodrigo; Trujillo, Juan-Carlos; Guerra, Edmundo; Grau, Antoni.
Afiliación
  • Munguia R; Department of Computer Science (CUCEI), University of Guadalajara, Guadalajara 44430, Mexico.
  • Trujillo JC; Department of Computer Science (CUCEI), University of Guadalajara, Guadalajara 44430, Mexico.
  • Guerra E; Department of Automatic Control, Technical University of Catalonia UPC, 08034 Barcelona, Spain.
  • Grau A; Department of Automatic Control, Technical University of Catalonia UPC, 08034 Barcelona, Spain.
Sensors (Basel) ; 22(1)2021 Dec 29.
Article en En | MEDLINE | ID: mdl-35009753
This work presents a hybrid visual-based SLAM architecture that aims to take advantage of the strengths of each of the two main methodologies currently available for implementing visual-based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is to implement a local SLAM process using a filter-based technique, and enable the tasks of building and maintaining a consistent global map of the environment, including the loop closure problem, to use the processes implemented using optimization-based techniques. Different variants of visual-based SLAM systems can be implemented using the proposed architecture. This work also presents the implementation case of a full monocular-based SLAM system for unmanned aerial vehicles that integrates additional sensory inputs. Experiments using real data obtained from the sensors of a quadrotor are presented to validate the feasibility of the proposed approach.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Robótica Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: México

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Robótica Idioma: En Revista: Sensors (Basel) Año: 2021 Tipo del documento: Article País de afiliación: México