Your browser doesn't support javascript.
loading
Intravital Imaging of the Murine Subventricular Zone with Three Photon Microscopy.
Sun, Bin; Wang, Mengran; Hoerder-Suabedissen, Anna; Xu, Chris; Packer, Adam M; Szele, Francis G.
Afiliación
  • Sun B; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
  • Wang M; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  • Hoerder-Suabedissen A; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
  • Xu C; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  • Packer AM; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
  • Szele FG; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Article en En | MEDLINE | ID: mdl-35029646
ABSTRACT
The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ventrículos Laterales / Células-Madre Neurales Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ventrículos Laterales / Células-Madre Neurales Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido