Your browser doesn't support javascript.
loading
Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection.
Yang, Yayu; Hao, Sijia; Lei, Xiangmin; Chen, Jianan; Fang, Guozhen; Liu, Jifeng; Wang, Shuo; He, Xingxing.
Afiliación
  • Yang Y; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Hao S; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Lei X; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Chen J; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Fang G; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Liu J; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address: liujifeng111@gmail.com.
  • Wang S; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai Univ
  • He X; Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China.
J Hazard Mater ; 428: 128262, 2022 04 15.
Article en En | MEDLINE | ID: mdl-35051771
ABSTRACT
Organophosphorus pesticides (OPs) detection has attracted considerable attention because of the extensive application of OPs. In this research, non-toxic and high-performance metalloenzyme mimics of Zn2+-bonding peptides were developed by obtaining inspiration from phosphotriesterase (PTE) and nanofiber formation. Furthermore, based on the electrochemical activity of p-nitrophenol (PNP), the electrochemical sensor of metalloenzyme mimics was developed. By examining the effect of the active sites of peptides and fibril formation on the degradation of OPs, the optimal metalloenzyme mimic was selected. Furthermore, optimal metalloenzyme mimics were combined with NiCo2O4 to develop an electrochemical sensor of OPs. By monitoring square wave voltammetry (SWV) signals of PNP degraded from OPs, the amounts of OPs in actual samples could be determined in 15 min. We discovered that both the active sites of α metal and ß metal were required for metalloenzyme mimics; Zn2+ promoted peptide fibrosis and especially acted as a cofactor for degrading OPs. Compared to traditional methods, the electrochemical sensor of metalloenzyme mimics was sensitive, reliable, and non-toxic; furthermore, the detection limit of methyl paraoxon was as low as 0.08 µM. The metalloenzyme mimics will be a promising material for detecting OPs in the food industry and environment fields.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plaguicidas / Técnicas Biosensibles / Metaloproteínas Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plaguicidas / Técnicas Biosensibles / Metaloproteínas Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article