Your browser doesn't support javascript.
loading
Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis.
Pons-Escoda, Albert; Garcia-Ruiz, Alonso; Naval-Baudin, Pablo; Grussu, Francesco; Fernandez, Juan Jose Sanchez; Simo, Angels Camins; Sarro, Noemi Vidal; Fernandez-Coello, Alejandro; Bruna, Jordi; Cos, Monica; Perez-Lopez, Raquel; Majos, Carles.
Afiliación
  • Pons-Escoda A; Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain. albert.pons.idi@gencat.cat.
  • Garcia-Ruiz A; Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. albert.pons.idi@gencat.cat.
  • Naval-Baudin P; Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain.
  • Grussu F; Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Fernandez JJS; Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain.
  • Simo AC; Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Sarro NV; Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Fernandez-Coello A; Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Bruna J; Pathology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Cos M; Neurosurgery Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.
  • Perez-Lopez R; Pathology and Experimental Therapeutics Department, Anatomy Unit, University of Barcelona, Barcelona, Spain.
  • Majos C; Biomedical Research Networking Centers of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Eur Radiol ; 32(6): 3705-3715, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35103827
OBJECTIVE: Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. METHODS: In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. RESULTS: A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%. CONCLUSION: This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. KEY POINTS: • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: España