Your browser doesn't support javascript.
loading
Computer-Aided Diagnosis of Vertebral Compression Fractures Using Convolutional Neural Networks and Radiomics.
Del Lama, Rafael Silva; Candido, Raquel Mariana; Chiari-Correia, Natália Santana; Nogueira-Barbosa, Marcello Henrique; de Azevedo-Marques, Paulo Mazzoncini; Tinós, Renato.
Afiliación
  • Del Lama RS; Department of Computing and Mathematics, FFCLRP, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, Brazil.
  • Candido RM; Department of Computing and Mathematics, FFCLRP, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, Brazil.
  • Chiari-Correia NS; Medical Artificial Intelligence Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
  • Nogueira-Barbosa MH; Medical Artificial Intelligence Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
  • de Azevedo-Marques PM; Medical Artificial Intelligence Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
  • Tinós R; Department of Computing and Mathematics, FFCLRP, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, Brazil. rtinos@ffclrp.usp.br.
J Digit Imaging ; 35(3): 446-458, 2022 06.
Article en En | MEDLINE | ID: mdl-35132524
Vertebral Compression Fracture (VCF) occurs when the vertebral body partially collapses under the action of compressive forces. Non-traumatic VCFs can be secondary to osteoporosis fragility (benign VCFs) or tumors (malignant VCFs). The investigation of the etiology of non-traumatic VCFs is usually necessary, since treatment and prognosis are dependent on the VCF type. Currently, there has been great interest in using Convolutional Neural Networks (CNNs) for the classification of medical images because these networks allow the automatic extraction of useful features for the classification in a given problem. However, CNNs usually require large datasets that are often not available in medical applications. Besides, these networks generally do not use additional information that may be important for classification. A different approach is to classify the image based on a large number of predefined features, an approach known as radiomics. In this work, we propose a hybrid method for classifying VCFs that uses features from three different sources: i) intermediate layers of CNNs; ii) radiomics; iii) additional clinical and image histogram information. In the hybrid method proposed here, external features are inserted as additional inputs to the first dense layer of a CNN. A Genetic Algorithm is used to: i) select a subset of radiomic, clinical, and histogram features relevant to the classification of VCFs; ii) select hyper-parameters of the CNN. Experiments using different models indicate that combining information is interesting to improve the performance of the classifier. Besides, pre-trained CNNs presents better performance than CNNs trained from scratch on the classification of VCFs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fracturas de la Columna Vertebral / Fracturas por Compresión Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fracturas de la Columna Vertebral / Fracturas por Compresión Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Brasil