Your browser doesn't support javascript.
loading
Steering CO2 hydrogenation toward C-C coupling to hydrocarbons using porous organic polymer/metal interfaces.
Zhou, Chengshuang; Asundi, Arun S; Goodman, Emmett D; Hong, Jiyun; Werghi, Baraa; Hoffman, Adam S; Nathan, Sindhu S; Bent, Stacey F; Bare, Simon R; Cargnello, Matteo.
Afiliación
  • Zhou C; Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
  • Asundi AS; Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
  • Goodman ED; SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305.
  • Hong J; Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
  • Werghi B; SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305.
  • Hoffman AS; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Nathan SS; Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
  • Bent SF; SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305.
  • Bare SR; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Cargnello M; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article en En | MEDLINE | ID: mdl-35135880
ABSTRACT
The conversion of CO2 into fuels and chemicals is an attractive option for mitigating CO2 emissions. Controlling the selectivity of this process is beneficial to produce desirable liquid fuels, but C-C coupling is a limiting step in the reaction that requires high pressures. Here, we propose a strategy to favor C-C coupling on a supported Ru/TiO2 catalyst by encapsulating it within the polymer layers of an imine-based porous organic polymer that controls its selectivity. Such polymer confinement modifies the CO2 hydrogenation behavior of the Ru surface, significantly enhancing the C2+ production turnover frequency by 10-fold. We demonstrate that the polymer layers affect the adsorption of reactants and intermediates while being stable under the demanding reaction conditions. Our findings highlight the promising opportunity of using polymer/metal interfaces for the rational engineering of active sites and as a general tool for controlling selective transformations in supported catalyst systems.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article