Your browser doesn't support javascript.
loading
Sparse balance: Excitatory-inhibitory networks with small bias currents and broadly distributed synaptic weights.
Khajeh, Ramin; Fumarola, Francesco; Abbott, L F.
Afiliación
  • Khajeh R; Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York City, New York, United States of America.
  • Fumarola F; Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York City, New York, United States of America.
  • Abbott LF; Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan.
PLoS Comput Biol ; 18(2): e1008836, 2022 02.
Article en En | MEDLINE | ID: mdl-35139071
Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous irregular activity but, in standard balanced E-I models, this requires that an extremely strong feedforward bias current be included along with the recurrent excitation and inhibition. The absence of experimental evidence for such large bias currents inspired us to examine an alternative regime that exhibits asynchronous activity without requiring unrealistically large feedforward input. In these networks, irregular spontaneous activity is supported by a continually changing sparse set of neurons. To support this activity, synaptic strengths must be drawn from high-variance distributions. Unlike standard balanced networks, these sparse balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis to illustrate the properties of these networks.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebral / Potenciales Sinápticos / Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Corteza Cerebral / Potenciales Sinápticos / Modelos Neurológicos / Red Nerviosa / Neuronas Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos