Your browser doesn't support javascript.
loading
High Entropy Oxide Relaxor Ferroelectrics.
Sharma, Yogesh; Lee, Min-Cheol; Pitike, Krishna Chaitanya; Mishra, Karuna K; Zheng, Qiang; Gao, Xiang; Musico, Brianna L; Mazza, Alessandro R; Katiyar, Ram S; Keppens, Veerle; Brahlek, Matthew; Yarotski, Dmitry A; Prasankumar, Rohit P; Chen, Aiping; Cooper, Valentino R; Ward, T Zac.
Afiliación
  • Sharma Y; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Lee MC; Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Pitike KC; Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Mishra KK; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Zheng Q; Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377, United States.
  • Gao X; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Musico BL; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Mazza AR; Sigma Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Katiyar RS; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Keppens V; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Brahlek M; Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377, United States.
  • Yarotski DA; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Prasankumar RP; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Chen A; Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Cooper VR; Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Ward TZ; Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
ACS Appl Mater Interfaces ; 14(9): 11962-11970, 2022 Mar 09.
Article en En | MEDLINE | ID: mdl-35226475
Relaxor ferroelectrics are important in technological applications due to strong electromechanical response, energy storage capacity, electrocaloric effect, and pyroelectric energy conversion properties. Current efforts to discover and design materials in this class generally rely on substitutional doping as slight changes to local compositional order can significantly affect the Curie temperature, morphotropic phase boundary, and electromechanical responses. In this work, we demonstrate that moving to the strong limit of compositional complexity in an ABO3 perovskite allows stabilization of relaxor responses that do not rely on a single narrow phase transition region. Entropy-assisted synthesis approaches are utilized to synthesize single-crystal Ba(Ti0.2Sn0.2Zr0.2Hf0.2Nb0.2)O3 [Ba(5B)O] films. The high levels of configurational disorder present in this system are found to influence dielectric relaxation, phase transitions, nanopolar domain formation, and Curie temperature. Temperature-dependent dielectric, Raman spectroscopy, and second-harmonic generation measurements reveal multiple phase transitions, a high Curie temperature of 570 K, and the relaxor ferroelectric nature of Ba(5B)O films. The first-principles theory calculations are used to predict possible combinations of cations to design relaxor ferroelectrics and quantify the relative feasibility of synthesizing these highly disordered single-phase perovskite systems. The ability to stabilize single-phase perovskites with various cations on the B-sites offers possibilities for designing high-performance relaxor ferroelectric materials for piezoelectric, pyroelectric, and electrocaloric applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos