Your browser doesn't support javascript.
loading
Statistical distortion of supervised learning predictions in optical microscopy induced by image compression.
Pomarico, Enrico; Schmidt, Cédric; Chays, Florian; Nguyen, David; Planchette, Arielle; Tissot, Audrey; Roux, Adrien; Pagès, Stéphane; Batti, Laura; Clausen, Christoph; Lasser, Theo; Radenovic, Aleksandra; Sanguinetti, Bruno; Extermann, Jérôme.
Afiliación
  • Pomarico E; HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland. enrico.pomarico@hesge.ch.
  • Schmidt C; HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland.
  • Chays F; HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland.
  • Nguyen D; Laboratory of Nanoscale Biology, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Planchette A; Laboratory of Nanoscale Biology, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Tissot A; Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland.
  • Roux A; HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland.
  • Pagès S; Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland.
  • Batti L; Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
  • Clausen C; Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland.
  • Lasser T; Dotphoton SA, Zeughausgasse 17, 6300, Zug, Switzerland.
  • Radenovic A; Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Sanguinetti B; Laboratory of Nanoscale Biology, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Extermann J; Dotphoton SA, Zeughausgasse 17, 6300, Zug, Switzerland.
Sci Rep ; 12(1): 3464, 2022 03 02.
Article en En | MEDLINE | ID: mdl-35236913
The growth of data throughput in optical microscopy has triggered the extensive use of supervised learning (SL) models on compressed datasets for automated analysis. Investigating the effects of image compression on SL predictions is therefore pivotal to assess their reliability, especially for clinical use. We quantify the statistical distortions induced by compression through the comparison of predictions on compressed data to the raw predictive uncertainty, numerically estimated from the raw noise statistics measured via sensor calibration. Predictions on cell segmentation parameters are altered by up to 15% and more than 10 standard deviations after 16-to-8 bits pixel depth reduction and 10:1 JPEG compression. JPEG formats with higher compression ratios show significantly larger distortions. Interestingly, a recent metrologically accurate algorithm, offering up to 10:1 compression ratio, provides a prediction spread equivalent to that stemming from raw noise. The method described here allows to set a lower bound to the predictive uncertainty of a SL task and can be generalized to determine the statistical distortions originated from a variety of processing pipelines in AI-assisted fields.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compresión de Datos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compresión de Datos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Suiza