Your browser doesn't support javascript.
loading
Comprehensive evaluation of deconvolution methods for human brain gene expression.
Sutton, Gavin J; Poppe, Daniel; Simmons, Rebecca K; Walsh, Kieran; Nawaz, Urwah; Lister, Ryan; Gagnon-Bartsch, Johann A; Voineagu, Irina.
Afiliación
  • Sutton GJ; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  • Poppe D; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
  • Simmons RK; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
  • Walsh K; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
  • Nawaz U; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
  • Lister R; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  • Gagnon-Bartsch JA; Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
  • Voineagu I; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
Nat Commun ; 13(1): 1358, 2022 03 15.
Article en En | MEDLINE | ID: mdl-35292647
ABSTRACT
Transcriptome deconvolution aims to estimate the cellular composition of an RNA sample from its gene expression data, which in turn can be used to correct for composition differences across samples. The human brain is unique in its transcriptomic diversity, and comprises a complex mixture of cell-types, including transcriptionally similar subtypes of neurons. Here, we carry out a comprehensive evaluation of deconvolution methods for human brain transcriptome data, and assess the tissue-specificity of our key observations by comparison with human pancreas and heart. We evaluate eight transcriptome deconvolution approaches and nine cell-type signatures, testing the accuracy of deconvolution using in silico mixtures of single-cell RNA-seq data, RNA mixtures, as well as nearly 2000 human brain samples. Our results identify the main factors that drive deconvolution accuracy for brain data, and highlight the importance of biological factors influencing cell-type signatures, such as brain region and in vitro cell culturing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Australia