Your browser doesn't support javascript.
loading
Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC.
Ben Jabra, Zouhour; Abel, Mathieu; Fabbri, Filippo; Aqua, Jean-Noel; Koudia, Mathieu; Michon, Adrien; Castrucci, Paola; Ronda, Antoine; Vach, Holger; De Crescenzi, Maurizio; Berbezier, Isabelle.
Afiliación
  • Ben Jabra Z; Aix Marseille University, CNRS, IM2NP, Marseille 13397, France.
  • Abel M; Aix Marseille University, CNRS, IM2NP, Marseille 13397, France.
  • Fabbri F; NEST, Istituto Nanoscienze-CNR, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
  • Aqua JN; Institut des Nanosciences de Paris, Sorbonne Université, CNRS, INSP, UMR 7588, 75005 Paris, France.
  • Koudia M; Aix Marseille University, CNRS, IM2NP, Marseille 13397, France.
  • Michon A; Université Côte d'Azur, CNRS, CRHEA, Valbonne 06560, France.
  • Castrucci P; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma 00133, Italy.
  • Ronda A; Aix Marseille University, CNRS, IM2NP, Marseille 13397, France.
  • Vach H; LPICM, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91128, France.
  • De Crescenzi M; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma 00133, Italy.
  • Berbezier I; Aix Marseille University, CNRS, IM2NP, Marseille 13397, France.
ACS Nano ; 16(4): 5920-5931, 2022 Apr 26.
Article en En | MEDLINE | ID: mdl-35294163
ABSTRACT
Graphene, consisting of an inert, thermally stable material with an atomically flat, dangling-bond-free surface, is by essence an ideal template layer for van der Waals heteroepitaxy of two-dimensional materials such as silicene. However, depending on the synthesis method and growth parameters, graphene (Gr) substrates could exhibit, on a single sample, various surface structures, thicknesses, defects, and step heights. These structures noticeably affect the growth mode of epitaxial layers, e.g., turning the layer-by-layer growth into the Volmer-Weber growth promoted by defect-assisted nucleation. In this work, the growth of silicon on chemical vapor deposited epitaxial Gr (1 ML Gr/1 ML Gr buffer) on a 6H-SiC(0001) substrate is investigated by a combination of atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy measurements. It is shown that the perfect control of full-scale almost defect-free 1 ML Gr with a single surface structure and the ultraclean conditions for molecular beam epitaxy deposition of silicon represent key prerequisites for ensuring the growth of extended silicene sheets on epitaxial graphene. At low coverages, the deposition of Si produces large silicene sheets (some hundreds of nanometers large) attested by both AFM and SEM observations and the onset of a Raman peak at 560 cm-1, very close to the theoretical value of 570 cm-1 calculated for free-standing silicene. This vibrational mode at 560 cm-1 represents the highest ever experimentally measured value and is representative of quasi-free-standing silicene with almost no interaction with inert nonmetal substrates. From a coverage rate of 1 ML, the silicene sheets disappear at the expense of 3D Si dendritic islands whose density, size, and thickness increase with the deposited thickness. From this coverage, the Raman mode assigned to quasi-free-standing silicene totally vanishes, and the 2D flakes of silicene are no longer observed by AFM. The experimental results are in very good agreement with the results of kinetic Monte Carlo simulations that rationalize the initial flake growth in solid-state dewetting conditions, followed by the growth of ridges surrounding and eventually covering the 2D flakes. A full description of the growth mechanism is given. This study, which covers a wide range of growth parameters, challenges recent results stating the impossibility to grow silicene on a carbon inert surface and is very promising for large-scale silicene growth. It shows that silicene growth can be achieved using perfectly controlled and ultraclean deposition conditions and an almost defect-free Gr substrate.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Francia