Your browser doesn't support javascript.
loading
Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol-Mediated Uptake.
Zhu, Yiwen; Lin, Mengyu; Hu, Wenting; Wang, Junkai; Zhang, Zhi-Guo; Zhang, Kai; Yu, Bingran; Xu, Fu-Jian.
Afiliación
  • Zhu Y; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Lin M; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Hu W; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Wang J; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Zhang ZG; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Zhang K; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Yu B; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
  • Xu FJ; State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Tec
Angew Chem Int Ed Engl ; 61(23): e202200535, 2022 06 07.
Article en En | MEDLINE | ID: mdl-35304808
ABSTRACT
New preparation methods of vectors are the key to developing the next generation of biomacromolecule delivery systems. In this study, a controllable disulfide exchange polymerization was established to obtain low-toxicity and efficient bioreducible polyguanidines (mPEG225 -b-PSSn , n=13, 26, 39, 75, 105) by regulating the concentration of activated nucleophiles and reaction time under mild reaction conditions. The relationship between the degrees of polymerization and biocompatibility was studied to identify the optimal polyguanidine mPEG225 -b-PSS26 . Such polyguanidine exhibited good in vitro performance in delivering different functional nucleic acids. The impressive therapeutic effects of mPEG225 -b-PSS26 were further verified in the 4T1 tumor-bearing mice as well as the mice with full-thickness skin defects. Controllable disulfide exchange polymerization provides an attractive strategy for the construction of new biomacromolecule delivery systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Neoplasias Límite: Animals Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácidos Nucleicos / Neoplasias Límite: Animals Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article