Your browser doesn't support javascript.
loading
Self-assembled gel tubes, filaments and 3D-printing with in situ metal nanoparticle formation and enhanced stem cell growth.
Piras, Carmen C; Kay, Alasdair G; Genever, Paul G; Fitremann, Juliette; Smith, David K.
Afiliación
  • Piras CC; Department of Chemistry, University of York Heslington York YO10 5DD UK david.smith@york.ac.uk.
  • Kay AG; Department of Biology, University of York Heslington York YO10 5DD UK.
  • Genever PG; Department of Biology, University of York Heslington York YO10 5DD UK.
  • Fitremann J; IMRCP, UMR 5623, CNRS, Université de Toulouse 118 Route de Narbonne F-31062 Toulouse France.
  • Smith DK; Department of Chemistry, University of York Heslington York YO10 5DD UK david.smith@york.ac.uk.
Chem Sci ; 13(7): 1972-1981, 2022 Feb 16.
Article en En | MEDLINE | ID: mdl-35308847
ABSTRACT
This paper reports simple strategies to fabricate self-assembled artificial tubular and filamentous systems from a low molecular weight gelator (LMWG). In the first strategy, tubular 'core-shell' gel structures based on the dibenzylidenesorbitol-based LMWG DBS-CONHNH2 were made in combination with the polymer gelator (PG) calcium alginate. In the second approach, gel filaments based on DBS-CONHNH2 alone were prepared by wet spinning at elevated concentrations using a 'solvent-switch' approach. The higher concentrations used in wet-spinning prevent the need for a supporting PG. Furthermore, this can be extended into a 3D-printing method, with the printed LMWG objects showing excellent stability for at least a week in water. The LMWG retains its unique ability for in situ precious metal reduction, yielding Au nanoparticles (AuNPs) within the tubes and filaments when they are exposed to AuCl3 solutions. Since the gel filaments have a higher loading of DBS-CONHNH2, they can be loaded with significantly more AuNPs. Cytotoxicity and viability studies on human mesenchymal stem cells show that the DBS-CONHNH2 and DBS-CONHNH2/alginate hybrid gels loaded with AuNPs are biocompatible, with the presence of AuNPs enhancing stem cell metabolism. Taken together, these results indicate that DBS-CONHNH2 can be shaped and 3D-printed, and has considerable potential for use in tissue engineering applications.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2022 Tipo del documento: Article