Your browser doesn't support javascript.
loading
Layered evolution of gene expression in "superfast" muscles for courtship.
Pease, James B; Driver, Robert J; de la Cerda, David A; Day, Lainy B; Lindsay, Willow R; Schlinger, Barney A; Schuppe, Eric R; Balakrishnan, Christopher N; Fuxjager, Matthew J.
Afiliación
  • Pease JB; Department of Biology, Wake Forest University, Winston-Salem, NC 27109.
  • Driver RJ; Department of Biology, East Carolina University, Greenville, NC 27858.
  • de la Cerda DA; Department of Biology, Wake Forest University, Winston-Salem, NC 27109.
  • Day LB; Department of Molecular Genetics and Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27106.
  • Lindsay WR; Department of Biology, University of Mississippi, Oxford, MS 38677.
  • Schlinger BA; Department of Biology, University of Mississippi, Oxford, MS 38677.
  • Schuppe ER; Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
  • Balakrishnan CN; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095.
  • Fuxjager MJ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A ; 119(14): e2119671119, 2022 04 05.
Article en En | MEDLINE | ID: mdl-35363565
ABSTRACT
Identifying the molecular process of complex trait evolution is a core goal of biology. However, pinpointing the specific context and timing of trait-associated changes within the molecular evolutionary history of an organism remains an elusive goal. We study this topic by exploring the molecular basis of elaborate courtship evolution, which represents an extraordinary example of trait innovation. Within the behaviorally diverse radiation of Central and South American manakin birds, species from two separate lineages beat their wings together using specialized "superfast" muscles to generate a "snap" that helps attract mates. Here, we develop an empirical approach to analyze phylogenetic lineage-specific shifts in gene expression in the key snap-performing muscle and then integrate these findings with comparative transcriptomic sequence analysis. We find that rapid wing displays are associated with changes to a wide range of molecular processes that underlie extreme muscle performance, including changes to calcium trafficking, myocyte homeostasis and metabolism, and hormone action. We furthermore show that these changes occur gradually in a layered manner across the species history, wherein which ancestral genetic changes to many of these molecular systems are built upon by later species-specific shifts that likely finalized the process of display performance adaptation. Our study demonstrates the potential for combining phylogenetic modeling of tissue-specific gene expression shifts with phylogenetic analysis of lineage-specific sequence changes to reveal holistic evolutionary histories of complex traits.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Expresión Génica / Músculo Esquelético / Cortejo / Passeriformes / Preferencia en el Apareamiento Animal / Vuelo Animal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Expresión Génica / Músculo Esquelético / Cortejo / Passeriformes / Preferencia en el Apareamiento Animal / Vuelo Animal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article