Your browser doesn't support javascript.
loading
Generalized scaling of spin qubit coherence in over 12,000 host materials.
Kanai, Shun; Heremans, F Joseph; Seo, Hosung; Wolfowicz, Gary; Anderson, Christopher P; Sullivan, Sean E; Onizhuk, Mykyta; Galli, Giulia; Awschalom, David D; Ohno, Hideo.
Afiliación
  • Kanai S; Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
  • Heremans FJ; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
  • Seo H; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies at Tohoku University, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
  • Wolfowicz G; Center for Science and Innovation in Spintronics, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
  • Anderson CP; Center for Spintronics Research Network, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
  • Sullivan SE; Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
  • Onizhuk M; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637.
  • Galli G; Department of Physics, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
  • Awschalom DD; Department of Energy Systems Research, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
  • Ohno H; Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
Proc Natl Acad Sci U S A ; 119(15): e2121808119, 2022 Apr 12.
Article en En | MEDLINE | ID: mdl-35385350
ABSTRACT
SignificanceAtomic defects in solid-state materials are promising candidates as quantum bits, or qubits. New materials are actively being investigated as hosts for new defect qubits; however, there are no unifying guidelines that can quantitatively predict qubit performance in a new material. One of the most critical property of qubits is their quantum coherence. While cluster correlation expansion (CCE) techniques are useful to simulate the coherence of electron spins in defects, they are computationally expensive to investigate broad classes of stable materials. Using CCE simulations, we reveal a general scaling relation between the electron spin coherence time and the properties of qubit host materials that enables rapid and quantitative exploration of new materials hosting spin defects.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article País de afiliación: Japón