Your browser doesn't support javascript.
loading
Temperature dependence of diffusiophoresis via a novel microfluidic approach.
Shah, Parth R; Tan, Huanshu; Taylor, David; Tang, Xiaoyu; Shi, Nan; Mashat, Afnan; Abdel-Fattah, Amr; Squires, Todd M.
Afiliación
  • Shah PR; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. tsquires@ucsb.edu.
  • Tan H; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. tsquires@ucsb.edu.
  • Taylor D; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. tsquires@ucsb.edu.
  • Tang X; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. tsquires@ucsb.edu.
  • Shi N; EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31311, Saudi Arabia.
  • Mashat A; EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31311, Saudi Arabia.
  • Abdel-Fattah A; EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31311, Saudi Arabia.
  • Squires TM; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. tsquires@ucsb.edu.
Lab Chip ; 22(10): 1980-1988, 2022 05 17.
Article en En | MEDLINE | ID: mdl-35445222
ABSTRACT
The temperature dependence of the diffusiophoretic mobility (DDP) is investigated experimentally and compared with theoretical predictions. These systematic measurements were made possible by a new microfluidic approach that enables truly steady state gradients to be imposed, and direct and repeatable measurements of diffusiophoretic migration to be made over hours-long time scales. Diffusiophoretic mobilities were measured for fluorescent, negatively charged polystyrene particles under NaCl gradients, at temperatures ranging from 20 °C to 70 °C. Measured DDP values were found to increase monotonically with temperature, and to agree, both qualitatively and relatively quantitatively, with theoretical predictions based on electrophoretically-measured zeta potentials. These results provide confidence that existing diffusiophoresis theories can accurately predict DP mobilities over a range of temperatures. More broadly, we anticipate our new microfluidic approach will facilitate and enable new tests of diffusiophoretic phenomena under a wide range of physical and chemical conditions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cloruro de Sodio / Microfluídica Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cloruro de Sodio / Microfluídica Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos