Your browser doesn't support javascript.
loading
Melanin biopolymer synthesis using a new melanogenic strain of Flavobacterium kingsejongi and a recombinant strain of Escherichia coli expressing 4-hydroxyphenylpyruvate dioxygenase from F. kingsejongi.
Lee, Han Sae; Choi, Jun Young; Kwon, Soon Jae; Park, Eun Seo; Oh, Byeong M; Kim, Jong H; Lee, Pyung Cheon.
Afiliación
  • Lee HS; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Choi JY; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Kwon SJ; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Park ES; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Oh BM; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Kim JH; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
  • Lee PC; Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea. pclee@ajou.ac.kr.
Microb Cell Fact ; 21(1): 75, 2022 May 02.
Article en En | MEDLINE | ID: mdl-35501871
BACKGROUND: Melanins are a heterologous group of biopolymeric pigments synthesized by diverse prokaryotes and eukaryotes and are widely utilized as bioactive materials and functional polymers in the biotechnology industry. Here, we report the high-level melanin production using a new melanogenic Flavobacterium kingsejongi strain and a recombinant Escherichia coli overexpressing F. kingsejongi 4-hydroxyphenylpyruvate dioxygenase (HPPD). RESULTS: Melanin synthesis of F. kingsejongi strain was confirmed via melanin synthesis inhibition test, melanin solubility test, genome analysis, and structural analysis of purified melanin from both wild-type F. kingsejongi and recombinant E. coli expressing F. kingsejongi HPPD. The activity of F. kingsejongi HPPD was demonstrated via in vitro assays with 6 × His-tagged and native forms of HPPD. The specific activity of F. kingsejongi HPPD was 1.2 ± 0.03 µmol homogentisate/min/mg-protein. Bioreactor fermentation of F. kingsejongi produced a large amount of melanin with a titer of 6.07 ± 0.32 g/L, a conversion yield of 60% (0.6 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.03 g/L·h, indicating its potential for industrial melanin production. Additionally, bioreactor fermentation of recombinant E. coli expressing F. kingsejongi HPPD produced melanin at a titer of 3.76 ± 0.30 g/L, a conversion yield of 38% (0.38 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.04 g/L·h. CONCLUSIONS: Both strains showed sufficiently high fermentation capability to indicate their potential as platform strains for large-scale bacterial melanin production. Furthermore, F. kingsejongi strain could serve as a model to elucidate the regulation of melanin biosynthesis pathway and its networks with other cellular pathways, and to understand the cellular responses of melanin-producing bacteria to environmental changes, including nutrient starvation and other stresses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: 4-Hidroxifenilpiruvato Dioxigenasa Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Corea del Sur

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: 4-Hidroxifenilpiruvato Dioxigenasa Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Corea del Sur