Your browser doesn't support javascript.
loading
Nanoscale Electronic Transparency of Wafer-Scale Hexagonal Boron Nitride.
Zerger, Caleb Z; Rodenbach, Linsey K; Chen, Yi-Ting; Safvati, Benjamin; Brubaker, Morgan Z; Tran, Steven; Chen, Tse-An; Li, Ming-Yang; Li, Lain-Jong; Goldhaber-Gordon, David; Manoharan, Hari C.
Afiliación
  • Zerger CZ; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Rodenbach LK; Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
  • Chen YT; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Safvati B; Department of Physics, Stanford University, Stanford, California 94305, United States.
  • Brubaker MZ; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Tran S; Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
  • Chen TA; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Li MY; Department of Physics, Stanford University, Stanford, California 94305, United States.
  • Li LJ; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Goldhaber-Gordon D; Department of Physics, Stanford University, Stanford, California 94305, United States.
  • Manoharan HC; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Nano Lett ; 22(11): 4608-4615, 2022 06 08.
Article en En | MEDLINE | ID: mdl-35536749
ABSTRACT
Monolayer hexagonal boron nitride (hBN) has attracted interest as an ultrathin tunnel barrier or environmental protection layer. Recently, wafer-scale hBN growth on Cu(111) was developed for semiconductor chip applications. For basic research and technology, understanding how hBN perturbs underlying electronically active layers is critical. Encouragingly, hBN/Cu(111) has been shown to preserve the Cu(111) surface state (SS), but it was unknown how tunneling into this SS through hBN varies spatially. Here, we demonstrate that the Cu(111) SS under wafer-scale hBN is homogeneous in energy and spectral weight over nanometer length scales and across atomic terraces. In contrast, a new spectral feature─not seen on bare Cu(111)─varies with atomic registry and shares the spatial periodicity of the hBN/Cu(111) moiré. This work demonstrates that, for some 2D electron systems, an hBN overlayer can act as a protective yet remarkably transparent window on fragile low-energy electronic structure below.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semiconductores / Compuestos de Boro Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Semiconductores / Compuestos de Boro Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos