Your browser doesn't support javascript.
loading
Novel MicroRNA-Regulated Transcript Networks Are Associated with Chemotherapy Response in Ovarian Cancer.
Topouza, Danai G; Choi, Jihoon; Nesdoly, Sean; Tarnouskaya, Anastasiya; Nicol, Christopher J B; Duan, Qing Ling.
Afiliación
  • Topouza DG; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada.
  • Choi J; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada.
  • Nesdoly S; School of Computing, Queen's University, 21-25 Union St., Kingston, ON K7L 2N8, Canada.
  • Tarnouskaya A; School of Computing, Queen's University, 21-25 Union St., Kingston, ON K7L 2N8, Canada.
  • Nicol CJB; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON K7L 3N6, Canada.
  • Duan QL; Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart St., Kingston, ON K7L 3N6, Canada.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article en En | MEDLINE | ID: mdl-35563265
High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in part due to resistance to platinum-based chemotherapy reported among 20% of patients. This study aims to generate novel hypotheses of the biological mechanisms underlying chemotherapy resistance, which remain poorly understood. Differential expression analyses of mRNA- and microRNA-sequencing data from HGSOC patients of The Cancer Genome Atlas identified 21 microRNAs associated with angiogenesis and 196 mRNAs enriched for adaptive immunity and translation. Coexpression network analysis identified three microRNA networks associated with chemotherapy response enriched for lipoprotein transport and oncogenic pathways, as well as two mRNA networks enriched for ubiquitination and lipid metabolism. These network modules were replicated in two independent ovarian cancer cohorts. Moreover, integrative analyses of the mRNA/microRNA sequencing and single-nucleotide polymorphisms (SNPs) revealed potential regulation of significant mRNA transcripts by microRNAs and SNPs (expression quantitative trait loci). Thus, we report novel transcriptional networks and biological pathways associated with resistance to platinum-based chemotherapy in HGSOC patients. These results expand our understanding of the effector networks and regulators of chemotherapy response, which will help to improve the management of ovarian cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Ováricas / MicroARNs / Redes Reguladoras de Genes Tipo de estudio: Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Ováricas / MicroARNs / Redes Reguladoras de Genes Tipo de estudio: Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Canadá