A learned embedding for efficient joint analysis of millions of mass spectra.
Nat Methods
; 19(6): 675-678, 2022 06.
Article
en En
| MEDLINE
| ID: mdl-35637305
Computational methods that aim to exploit publicly available mass spectrometry repositories rely primarily on unsupervised clustering of spectra. Here we trained a deep neural network in a supervised fashion on the basis of previous assignments of peptides to spectra. The network, called 'GLEAMS', learns to embed spectra in a low-dimensional space in which spectra generated by the same peptide are close to one another. We applied GLEAMS for large-scale spectrum clustering, detecting groups of unidentified, proximal spectra representing the same peptide. We used these clusters to explore the dark proteome of repeatedly observed yet consistently unidentified mass spectra.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Péptidos
/
Espectrometría de Masas en Tándem
Idioma:
En
Revista:
Nat Methods
Asunto de la revista:
TECNICAS E PROCEDIMENTOS DE LABORATORIO
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos