Your browser doesn't support javascript.
loading
A learned embedding for efficient joint analysis of millions of mass spectra.
Bittremieux, Wout; May, Damon H; Bilmes, Jeffrey; Noble, William Stafford.
Afiliación
  • Bittremieux W; Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA, USA.
  • May DH; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  • Bilmes J; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA.
  • Noble WS; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
Nat Methods ; 19(6): 675-678, 2022 06.
Article en En | MEDLINE | ID: mdl-35637305
Computational methods that aim to exploit publicly available mass spectrometry repositories rely primarily on unsupervised clustering of spectra. Here we trained a deep neural network in a supervised fashion on the basis of previous assignments of peptides to spectra. The network, called 'GLEAMS', learns to embed spectra in a low-dimensional space in which spectra generated by the same peptide are close to one another. We applied GLEAMS for large-scale spectrum clustering, detecting groups of unidentified, proximal spectra representing the same peptide. We used these clusters to explore the dark proteome of repeatedly observed yet consistently unidentified mass spectra.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Espectrometría de Masas en Tándem Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Espectrometría de Masas en Tándem Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos