Your browser doesn't support javascript.
loading
An interpretable and versatile machine learning approach for oocyte phenotyping.
Letort, Gaelle; Eichmuller, Adrien; Da Silva, Christelle; Nikalayevich, Elvira; Crozet, Flora; Salle, Jeremy; Minc, Nicolas; Labrune, Elsa; Wolf, Jean-Philippe; Terret, Marie-Emilie; Verlhac, Marie-Hélène.
Afiliación
  • Letort G; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.
  • Eichmuller A; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.
  • Da Silva C; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.
  • Nikalayevich E; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.
  • Crozet F; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, 75231 Paris, France.
  • Salle J; Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
  • Minc N; Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
  • Labrune E; Service de Médecine de la Reproduction, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France.
  • Wolf JP; Université Claude Bernard Lyon 1, 69100 Lyon, France.
  • Terret ME; INSERM U1208, StemGamE, 69500 Bron, France.
  • Verlhac MH; Team 'From Gametes To Birth', Département Développement, Reproduction, Cancer, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 22 rue Mechain, 75014 Paris, France.
J Cell Sci ; 135(13)2022 07 01.
Article en En | MEDLINE | ID: mdl-35660922
Meiotic maturation is a crucial step of oocyte formation, allowing its potential fertilization and embryo development. Elucidating this process is important for both fundamental research and assisted reproductive technology. However, few computational tools based on non-invasive measurements are available to characterize oocyte meiotic maturation. Here, we develop a computational framework to phenotype oocytes based on images acquired in transmitted light. We trained neural networks to segment the contour of oocytes and their zona pellucida using oocytes from diverse species. We defined a comprehensive set of morphological features to describe an oocyte. These steps were implemented in an open-source Fiji plugin. We present a feature-based machine learning pipeline to recognize oocyte populations and determine morphological differences between them. We first demonstrate its potential to screen oocytes from different strains and automatically identify their morphological characteristics. Its second application is to predict and characterize the maturation potential of oocytes. We identify the texture of the zona pellucida and cytoplasmic particle size as features to assess mouse oocyte maturation potential and tested whether these features were applicable to the developmental potential of human oocytes. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oocitos / Células del Cúmulo Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: J Cell Sci Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oocitos / Células del Cúmulo Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: J Cell Sci Año: 2022 Tipo del documento: Article País de afiliación: Francia