Your browser doesn't support javascript.
loading
Rate Coefficients for OH + NO (+N2) in the Fall-off Regime and the Impact of Water Vapor.
Sun, Wenyu; Lelieveld, Jos; Crowley, John N.
Afiliación
  • Sun W; Division of Atmospheric Chemistry, Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
  • Lelieveld J; Division of Atmospheric Chemistry, Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
  • Crowley JN; Division of Atmospheric Chemistry, Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
J Phys Chem A ; 126(24): 3863-3872, 2022 Jun 23.
Article en En | MEDLINE | ID: mdl-35675113
ABSTRACT
The termolecular, association reaction between OH and NO is a source of nitrous acid (HONO), an important atmospheric trace gas. Rate coefficients for the title reaction as recommended by evaluation panels differ substantially at the temperatures and pressures that prevail in the Earth's boundary layer where the reaction is in the fall-off regime between low- and high-pressure limiting rate coefficients. Using pulsed laser methods for generation and detection of OH, we have reinvestigated the kinetics of the title reaction at pressures of 22-743 Torr (1 Torr = 1.333 hPa) and temperatures (273, 298, and 333 K) in pure N2 and in N2-H2O bath gases. In situ optical absorption measurements were used to rule out any bias due to NO2 or HONO impurities. Our rate coefficients (k1) in N2 bath gas are parametrized in terms of low-pressure (k0) and high-pressure (k∞) rate coefficients and a fall-off parameter (FC) with k1,0N2 = 7.24 × 10-31 (T/300 K)-2.17 cm6 molecule-2 s-1, k1,∞ = 3.3 × 10-12 (T/300 K)-0.3 cm3 molecule-1 s-1, and FC = 0.53. Used with the "Troe" expression for termolecular reactions, these parameters accurately reproduce the current data in the fall-off regime and also capture literature rate coefficients at extrapolated temperatures. The presence of water vapor was found to enhance the rate coefficients of the title reaction significantly. The low-pressure limiting rate coefficient in H2O bath gas is a factor 5-6 larger than in N2, at room temperature (k1,0H2O = 4.55 × 10-30 (T/300 K)-4.85 cm6 molecule-2 s-1) indicating that H2O is much more efficient in quenching the association complex HONO* through collisional energy transfer. Based on measurements in N2-H2O mixtures, a parametrization of k1 including both N2 and H2O as third-body quenchers was derived. Neglecting the effect of H2O results, e.g., in an underestimation of k1 by >10% in the tropical boundary layer.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania