Your browser doesn't support javascript.
loading
Ultrahigh Kinetic Inductance Superconducting Materials from Spinodal Decomposition.
Gao, Ran; Ku, Hsiang-Sheng; Deng, Hao; Yu, Wenlong; Xia, Tian; Wu, Feng; Song, Zhijun; Wang, Minghua; Miao, Xiaohe; Zhang, Chao; Lin, Yue; Shi, Yaoyun; Zhao, Hui-Hai; Deng, Chunqing.
Afiliación
  • Gao R; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Ku HS; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Deng H; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Yu W; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Xia T; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Wu F; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Song Z; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Wang M; Westlake Center for Micro/Nano Fabrication, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China.
  • Miao X; Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China.
  • Zhang C; Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China.
  • Lin Y; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Shi Y; Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, WA, 98004, USA.
  • Zhao HH; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
  • Deng C; Alibaba Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang, 311121, P. R. China.
Adv Mater ; 34(32): e2201268, 2022 Aug.
Article en En | MEDLINE | ID: mdl-35678176
ABSTRACT
Disordered superconducting nitrides with kinetic inductance have long been considered to be leading material candidates for high-inductance quantum-circuit applications. Despite continuing efforts toward reducing material dimensions to increase the kinetic inductance and the corresponding circuit impedance, achieving further improvements without compromising material quality has become a fundamental challenge. To this end, a method to drastically increase the kinetic inductance of superconducting materials via spinodal decomposition while maintaining a low microwave loss is proposed. Epitaxial Ti0.48 Al0.52 N is used as a model system and the utilization of spinodal decomposition to trigger the insulator-to-superconductor transition with a drastically enhanced material disorder is demonstrated. The measured kinetic inductance increases by two to three orders of magnitude compared with the best disordered superconducting nitrides reported to date. This work paves the way for substantially enhancing and deterministically controlling the inductance for advanced superconducting quantum circuits.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article