Your browser doesn't support javascript.
loading
Detecting negative valence symptoms in adolescents based on longitudinal self-reports and behavioral assessments.
Paschali, Magdalini; Kiss, Orsolya; Zhao, Qingyu; Adeli, Ehsan; Podhajsky, Simon; Müller-Oehring, Eva M; Gotlib, Ian H; Pohl, Kilian M; Baker, Fiona C.
Afiliación
  • Paschali M; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Kiss O; Center for Health Sciences, SRI International, Menlo Park, CA, USA.
  • Zhao Q; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Adeli E; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Podhajsky S; Center for Health Sciences, SRI International, Menlo Park, CA, USA.
  • Müller-Oehring EM; Center for Health Sciences, SRI International, Menlo Park, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Gotlib IH; Department of Psychology, Stanford University, Stanford, CA, USA.
  • Pohl KM; Center for Health Sciences, SRI International, Menlo Park, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA. Electronic address: kilian.pohl@stanford.edu.
  • Baker FC; Center for Health Sciences, SRI International, Menlo Park, CA, USA.
J Affect Disord ; 312: 30-38, 2022 09 01.
Article en En | MEDLINE | ID: mdl-35688394
BACKGROUND: Given the high prevalence of depressive symptoms reported by adolescents and associated risk of experiencing psychiatric disorders as adults, differentiating the trajectories of the symptoms related to negative valence at an individual level could be crucial in gaining a better understanding of their effects later in life. METHODS: A longitudinal deep learning framework is presented, identifying self-reported and behavioral measurements that detect the depressive symptoms associated with the Negative Valence System domain of the NIMH Research Domain Criteria (RDoC). RESULTS: Applied to the annual records of 621 participants (age range: 12 to 17 years) of the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA), the deep learning framework identifies predictors of negative valence symptoms, which include lower extraversion, poorer sleep quality, impaired executive control function and factors related to substance use. LIMITATIONS: The results rely mainly on self-reported measures and do not provide information about the underlying neural correlates. Also, a larger sample is required to understand the role of sex and other demographics related to the risk of experiencing symptoms of negative valence. CONCLUSIONS: These results provide new information about predictors of negative valence symptoms in individuals during adolescence that could be critical in understanding the development of depression and identifying targets for intervention. Importantly, findings can inform preventive and treatment approaches for depression in adolescents, focusing on a unique predictor set of modifiable modulators to include factors such as sleep hygiene training, cognitive-emotional therapy enhancing coping and controllability experience and/or substance use interventions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Terapia Cognitivo-Conductual / Trastornos Mentales Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Child / Humans Idioma: En Revista: J Affect Disord Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Terapia Cognitivo-Conductual / Trastornos Mentales Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Child / Humans Idioma: En Revista: J Affect Disord Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos