Your browser doesn't support javascript.
loading
Catalytic oxidation of 4-acetamidophenol with Fe3+-enhanced Cu0 particles: In-site generation and activation of hydrogen peroxide.
Liu, Xin; Xu, Peng; Yang, Zhuoyu; Zhu, Pengfei; Wang, Lei; Xie, Shiqi.
Afiliación
  • Liu X; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
  • Xu P; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China. Electronic address:
  • Yang Z; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
  • Zhu P; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
  • Wang L; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
  • Xie S; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
J Hazard Mater ; 436: 129291, 2022 08 15.
Article en En | MEDLINE | ID: mdl-35739796
Cu0 coupled with O2 was used to degrade contaminant due to in-site generation and catalysis of H2O2, while the low reactivity and active dismutation reaction of Cu+ refrained the performance at acidic condition. In this study, the removal rate of 4-acetamidophenol increased from 27 % to 83.4 % with Fe3+ spiked into the Cu0 system within 60 min •OH was the primary reactive species in the Fe3+/Cu0 system. In the Fe3+/Cu0 system, Cu0 was corroded to form Cu+ by H+ and O2, and then Cu+ interacted with O2 generating H2O2, and meanwhile Fe3+ was reduced to Fe2+ by Cu+ and Cu0; Consequently, Cu+ and Fe2+ induced H2O2 to produce •OH, but Fe2+ was easier to catalyze H2O2 than Cu+ at acidic pH. Except for fulvic acid, common water matrix including sulfate ion, phosphate ion, chloride ion and nitrate ion had no inhibition effect on the degradation of 4-acetamidophenol in the Fe3+/Cu0 system. over 62 % of 4-acetamidophenol in tap water, Hou-lake water and well water was greatly oxidized by the Fe3+/Cu0 system. Furthermore, the amount of total dissolved copper decreased to 0.895 mg/L by the method of alkali precipitation in the Fe3+/Cu0 system. The study provided a theoretical direction to the Fe3+-enhanced Cu0 system for purifying wastewater.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Peróxido de Hidrógeno / Acetaminofén Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Peróxido de Hidrógeno / Acetaminofén Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article