Your browser doesn't support javascript.
loading
Helicobacter pylori pathogen inhibits cellular responses to oncogenic stress and apoptosis.
Palrasu, Manikandan; Zaika, Elena; Paulrasu, Kodisundaram; Caspa Gokulan, Ravindran; Suarez, Giovanni; Que, Jianwen; El-Rifai, Wael; Peek, Richard M; Garcia-Buitrago, Monica; Zaika, Alexander I.
Afiliación
  • Palrasu M; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America.
  • Zaika E; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America.
  • Paulrasu K; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America.
  • Caspa Gokulan R; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America.
  • Suarez G; Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America.
  • Que J; Department of Medicine, Columbia University Medical Center, New York, New York, United States of America.
  • El-Rifai W; Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America.
  • Peek RM; Department of Veterans Affairs, Miami VA Healthcare System, Miami, Florida, United States of America.
  • Garcia-Buitrago M; Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America.
  • Zaika AI; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
PLoS Pathog ; 18(6): e1010628, 2022 06.
Article en En | MEDLINE | ID: mdl-35767594
ABSTRACT
Helicobacter pylori (H. pylori) is a common gastric pathogen that infects approximately half of the world's population. Infection with H. pylori can lead to diverse pathological conditions, including chronic gastritis, peptic ulcer disease, and cancer. The latter is the most severe consequence of H. pylori infection. According to epidemiological studies, gastric infection with H. pylori is the strongest known risk factor for non-cardia gastric cancer (GC), which remains one of the leading causes of cancer-related deaths worldwide. However, it still remains to be poorly understood how host-microbe interactions result in cancer development in the human stomach. Here we focus on the H. pylori bacterial factors that affect the host ubiquitin proteasome system. We investigated E3 ubiquitin ligases SIVA1 and ULF that regulate p14ARF (p19ARF in mice) tumor suppressor. ARF plays a key role in regulation of the oncogenic stress response and is frequently inhibited during GC progression. Expression of ARF, SIVA1 and ULF proteins were investigated in gastroids, H. pylori-infected mice and human gastric tissues. The role of the H. pylori type IV secretion system was assessed using various H. pylori isogenic mutants. Our studies demonstrated that H. pylori infection results in induction of ULF, decrease in SIVA1 protein levels, and subsequent ubiquitination and degradation of p14ARF tumor suppressor. Bacterial CagA protein was found to sequentially bind to SIVA1 and ULF proteins. This process is regulated by CagA protein phosphorylation at the EPIYA motifs. Downregulation of ARF protein leads to inhibition of cellular apoptosis and oncogenic stress response that may promote gastric carcinogenesis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Gástricas / Helicobacter pylori / Infecciones por Helicobacter Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: PLoS Pathog Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Gástricas / Helicobacter pylori / Infecciones por Helicobacter Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: PLoS Pathog Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos